New Approaches to Gait Rehabilitation After Stroke

Seok Hun Kim, PT, PhD

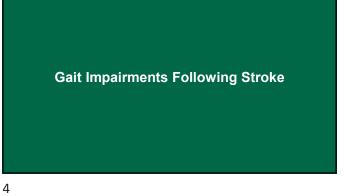
St USF Health

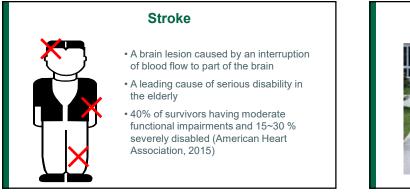
Objectives

- · Identify gait impairments following stroke
- Describe current gait training methods for people with stroke.
- Differentiate an error augmentation approach from an error reduction approach.
- Discuss gait training approaches that destabilize the nonparetic leg.
- Implement the use of destabilizing the non-paretic leg in clinical practice.

2

SOUTH FLORIDA


College of Medicine


USFHealth

- I. Gait impairments following stroke
- II. Gait training approaches: error reduction vs. error augmentation
- III. New overground gait training approach
- IV. Discussion

3

1

Walking Ability After Stroke

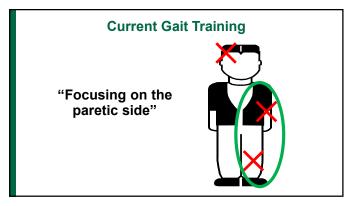
- Decreased walking speed (Bohannon et al., 1987)
- Asymmetrical walking patterns (Kim et al., 2019)
- Increased the energy cost of walking (Gordon et al., 2004)
- Use of an assistive device

Gait Asymmetry After Stroke

- Increased step length of the paretic side (Nascimento et al., 2015)
- Lengthened swing phase of the paretic side (Nascimento et al., 2015)
- Increased weight bearing on the non-paretic side (Kim et al., 2003)

7

9



Error Reduction Approach

- Traditional training approach
- Important for motor learning (Shadmehr et al., 2010)
- Assist-as-needed mechanism (Duschau-Wicke et at., 2010)
- Reducing subject's movement errors during training (Emken et al., 2007)

10

Body Weight Supported Treadmill Training

- Holding and moving the patient's leg along a gaitlike trajectory
- Labor intensive
- Not superior to conventional physical therapy (Moseley et al. 2005)
- Limited carryover effects

Human Locomotion Research Center, UCLA

Robot-Assisted Gait Training

- High repetition accuracy
- Prolonged training duration
- Computerized feedback
- However, the benefits of robotic training over conventional gait training are limited (Husemann et al. 2007, Hidler et al., 2009).

14

Robot-Assisted Gait Training

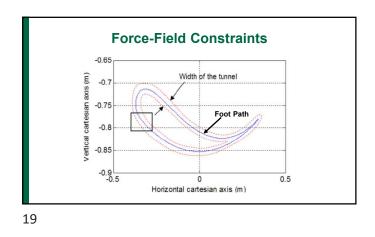
- Most existing applications of robotics to gait retraining move the patient's limb *passively* through a range of motion during training.
- This approach does not challenge the patient's errorcorrection mechanisms.

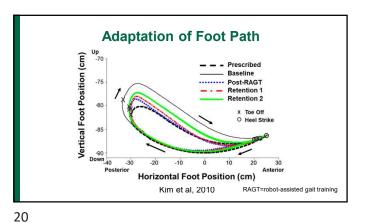
15

13

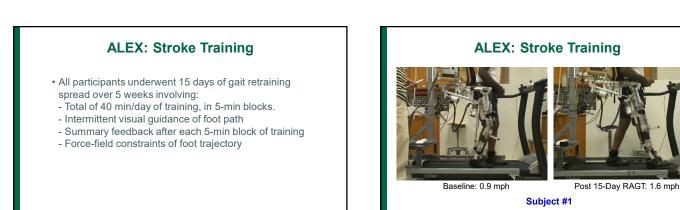
Active Leg Exoskeleton (ALEX)

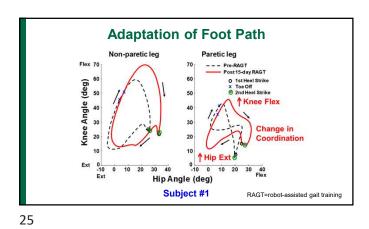
- Active motors control knee and hip motion.
- Ankle is free to move in sagittal plane.
- Degrees of freedom at pelvis and trunk allow for side to side motion and rotation.
- Feedbacks

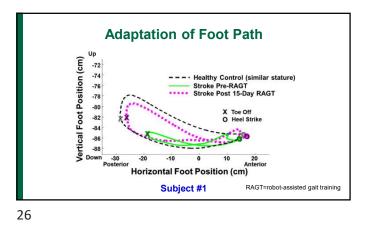

16

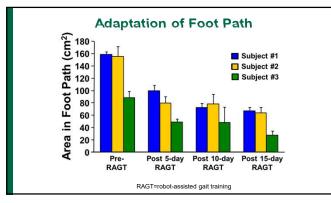

Active Leg Exoskeleton (ALEX)

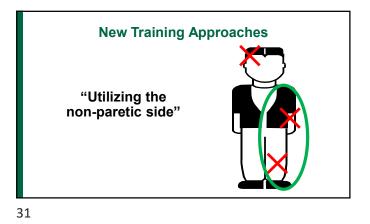
- *Constrains* the person's limb movement, i.e., preventing excessive deviation from desired foot path
- Requires *active control* of limb movement, using visual guidance, the patient must correct his pattern towards a more normal pattern.
- Leg is not forced to adopt a fixed trajectory.
- Desired foot path is gradually morphed towards a more normal pattern


- Participants: 39 healthy young adults (20-33 years old)
 Group 1 (n=13): force-field constraints + visual guidance (FFC+VG)
- Group 2 (n=13): force-field constraints alone (FFC)
- Group 3 (n=13): visual guidance alone (VG)
- Training: Six blocks of 10-min gait training



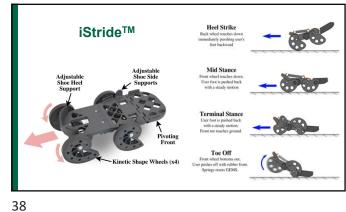

Adaptation of Foot Path Area Between Foot Paths (cm²) FFC+VG FFC Pre-RAGT RAGT RAGT=robot-assisted gait training


ALEX: Stroke Study								
Subjects' Characteristics								
Participants	Subject #1	Subject #2	Subject #3					
Age at Training (year)	72	47	78					
Years Post-stroke (year)	3.5	3.2	2.5					
Gender	Male	Male	Male					
Lesion	Left MCA	Left MCA	Left MCA					
Height (cm)	187	180	173					
Weight (kg)	97.1	79.4	72.6					
Mini-Mental Status Exam	27/30	23/30	27/30					
Berg's Balance Scale	49/56	54/56	46/56					



Split-belt Treadmill TrainingImage: Split-belt Treadmill TrainingImage: Split-belt Treadmill TrainingImage: Split-belt Treadmill TrainingImage: Split-belt Treadmill Training

Why Limited Carryover Effects?


- Conflicting sensory experiences between the treadmill training environment and the overground environment.
- The perceptual change → the new environment is not the same as that in which the patient was trained.

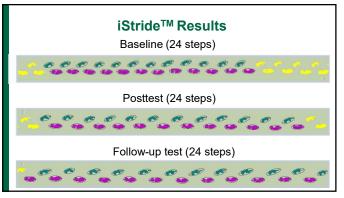
34

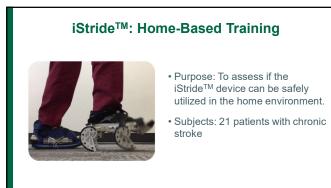
New Overground Gait Training Approach



iStride[™]: Feasibility Study • Purpose: To assess if the iStride[™] can improve walking patterns in individuals with stroke Subjects: 6 patients with chronic stroke

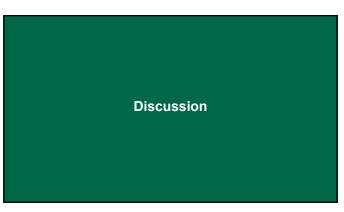
40





Assessments and Training

- Assessments: 10 Minute Walk Test, Functional Gait Assessment, Timed Up & Go Test, Berg Balance Scale
- Training: 4 weeks training, 3 sessions per week, 30 minutes each

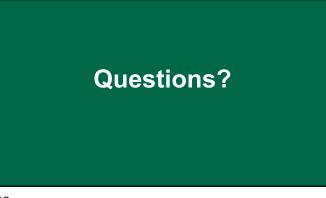


49

Table 3. Statistical Analysis of Five	Outcome Measures.					
Outcome Measure		Mean	SD	SE	Т	p-valu
10MWT (m/s)	Baseline	0.551	0.245	0.053	T (20)	1
Small Meaningful Change = 0.06 ³⁵	1 Wk Post	0.820	0.313	0.068		1
$MCID = 0.16^{36}$	Difference	0.269			7.450	/ 0.000
TUG (seconds) MDC = -3.5 ³⁷	Baseline	19.20	8.06	1.76	T (20)	1
	1 Wk Post	14.39	5.74	1.25		- 1
	Difference	-4.81			-6.428	0.000
BBS (points) MDC = 2.5 ^{22,38}	Baseline	43.52	6.41	1.40	T (20)	i i
	1 Wk Post	47.43	4.82	1.05		1.0
	Difference	3.91			3.790	0.001
FGA (points) MDC = 4.2, 14.1% ³⁹	Baseline	15.00	4.89	1.07	T (20)	
	1 Wk Post	19.43	4.56	0.99		1.1
	Difference	4.43			5.727	0.000
	Difference (%)	37.8			4.487	0.000
SS-QOL (points)	Baseline	165.05	23.84	5.47	T (18)	
N/A	1 Wk Post	181.58	25.29	5.80		- i -
	Difference	16.53			3.027	0.007
	Difference (%)	11.1			3.150	10.006

Effectiveness of iStride[™]

- A new overground gait training approach is effective in improving walking ability in people with stroke.
- A wearable device that destabilizes the non-paretic leg improves gait symmetry and functional walking following stroke.
- The iStrideTM device can be safely used in the home environment.


55

57

Clinical Relevance Then, how can we mimic this approach (e.g., destabilizing the non-paretic leg) during training? Be creative!!!

Future Research • Compare iStride[™] training with conventional gait training or split-belt treadmill training • Combine with sensory cues (e.g., auditory rhythms) • Develop an individualized iStride[™] device

